If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+26p+6p=48
We move all terms to the left:
2p^2+26p+6p-(48)=0
We add all the numbers together, and all the variables
2p^2+32p-48=0
a = 2; b = 32; c = -48;
Δ = b2-4ac
Δ = 322-4·2·(-48)
Δ = 1408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1408}=\sqrt{64*22}=\sqrt{64}*\sqrt{22}=8\sqrt{22}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{22}}{2*2}=\frac{-32-8\sqrt{22}}{4} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{22}}{2*2}=\frac{-32+8\sqrt{22}}{4} $
| x^2+x-5=2x+4 | | 15+3p=0 | | 1+4/x=5 | | 50+10x0+7+2=9= | | -3a^2=15a | | x/24-1/4=12 | | 50+x=2x-5 | | a^{2}-8a=0 | | 4n+16=30 | | 5,2(3-2x)=-4-2x | | 15a-5a+3a=30 | | (7x-2)+(2x+6)+33=180 | | =A(n-1)+10→ | | 4(3x+5)=62 | | 8^3x-12=32^x+4 | | b(b+84)=1824 | | 3+2=x17 | | (3y+17)=50 | | 4-m/7=17 | | 7-m/5=14 | | 2×3=x17 | | 12=a/7-6 | | (3x-2)+7=144 | | 30=-8w+2(w+6) | | -2x-10x+12=18x= | | 40+0.45a=450.40a | | -33+1x=-4 | | -33+-1x=-4 | | 7=–w–6w | | 3n-3=4n/1 | | 4/x-8x=0 | | 4x/3-7=8 |